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Abstract: The prediction of the rotational strength of a vibrational transition of a chiral molecule requires calculation of the 
transition moments of the electric and magnetic dipole operators. An a priori formalism for the magnetic dipole transition 
moment has recently been developed by Stephens. Together with the standard formalism for the calculation of electric dipole 
transition moments, this permits rigorous calculations of vibrational rotational strengths. This new formalism requires calculation 
of the adiabatic wave functions of the ground electronic state as functions of nuclear displacement coordinates and of applied 
magnetic field. We describe here its implementation for trans- 1,2-dideuteriocyclopropane, using SCF electronic wave functions. 
The results, using the 4-31G basis set, are computationally well-behaved and physically reasonable, demonstrating the practicability 
of the theoretical formalism. A preliminary examination of the sensitivity of predicted rotational strengths to the choice of 
equilibrium geometry and vibrational force field is carried out. 

There have been a number of attempts to calculate the rota­
tional strengths of vibrational transitions of chiral molecules over 
the last two decades.' Model calculations first supported the 
possibility of measuring vibrational circular dichroism (VCD)2,3 

and were in turn stimulated by the development of techniques for 
its experimental observation.3"6 Up until now theoretical efforts 
have been hampered, however, by the lack of an adequate theory. 
Although a number of models have been proposed,1"3,7"12 none 
has proven satisfactory.1 While in some cases these models have 
been successful in predicting observed spectra, in others they have 
failed badly. Furthermore, given the lack of an adequate theo­
retical basis, it has been difficult to understand why these theories 
succeeded or failed in specific cases. 

Formulation of a systematic theory has been hampered by a 
major theoretical stumbling block, the need to go beyond the 
Born-Oppenheimer approximation. Use of the Born-Oppen-
heimer approximation to calculate vibrational rotational strengths 
leads to a nonphysical result; the electronic contribution to the 
magnetic dipole transition moment vanishes.13,14 This difficulty 
can be overcome by including higher order terms in the Born-
Oppenheimer expansion. Unfortunately, such expansions give 
expressions that are difficult to use in practice because of the sums 
over states that result. However, a solution to this problem has 
recently been developed by Stephens,15 who obtained an equation 
for the electronic contribution to the magnetic dipole moment of 
a vibrational transition that requires only adiabatic ground-state 
electronic wave functions. It is the purpose of this paper to report 
the first explicit calculations of vibrational rotational strengths 
using this new formalism and thereby demonstrate its practicality. 

While both ab initio and semiempirical approaches to the 
calculation of electronic wave functions are widely used, we choose 
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to implement our formalism using ab initio wave functions. There 
has been rapid development in the use of ab initio methods to 
calculate a number of molecular properties in the last few years. 
Molecular geometries, force constants, intensities of vibrational 
transitions, and reaction pathways, among other properties, have 
all been calculated with varying degrees of accuracy.16"22 Such 
techniques have also been used to calculate rotational strengths 
of electronic transitions.23 

The molecule studied here is trans- 1,2-dideuteriocyclopropane 
(trans-l,2-C3H4D2). This chiral molecule is ideal as a test case. 
It is small, making SCF calculations with large basis sets eco­
nomical. It exists in only one conformation and the geometry and 
force field of cyclopropane have been thoroughly studied. Un­
fortunately, although partially resolved trans-\,2-C3H4D2

24 has 
been synthesized, to date no VCD data exist. We hope that our 
calculations will encourage experimental studies, given the at­
tractiveness of this molecule from a theoretical standpoint. 

Theory 
The rotational strength of a vibrational transition between two 

vibrational states, g and e, of the nondegenerate electronic ground 
state, G, is given by 

/J (Gg-Ge) = Im[(*Gg |Me, |*Ge)-(^Ge |?mag |*Gg)] (1) 

where Me| is the electric dipole operator and jumag is the magnetic 
dipole operator. 

Within the Born-Oppenheimer approximation, 

*Kk(r,R) = ^K(f;R)XKk(R) (2) 

where r and R denote electronic and nuclear coordinates, re­
spectively. The electric and magnetic dipole transition moments 
are then 

<*G,IAll*0.> = <XG«I W o I i W o ) + Md11IXGe) 
<*Gg|Mmagl*Ge> = <XGgl W o l / W I ^ I X G e ) + <*Gg|/WI*Ge> 

(3) 
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where %\ and juraag
e are the electronic terms of the electric and 

magnetic dipole operators, respectively, and jte" and ju^g" are the 
nuclear terms. 

The matrix element of £mag
e is the one that causes the trouble, 

since for a nondegenerate ground state 

WG&WW-G) - 0 (4) 

so that the only contribution to the magnetic dipole transition 
moment comes from the nuclear terms. 

An electronic contribution to the magnetic dipole transition 
moment will be nonzero only when wave functions are used that 
are more accurate than those given by the Born-Oppenheimer 
approximation. Born-Oppenheimer functions are obtained by 
neglecting matrix elements of the nuclear kinetic energy operator 
between different electronic states. If these are included, the wave 
functions correct to first order are given by 

* K = * K k + E*K'k'«K'k';Kk 
K'k' 

where 

aK'k';Kk -
<*K'k<l?/|*Kk> 

(K'k' * Kk) 

(5) 

(6) 

Here fi is the Hamiltonian of the system, ft = ftd + Tn, where 
ftel is the electronic Hamiltonian and Tn is the nuclear kinetic 
energy operator. 

The contribution of £mag
e to the magnetic dipole transition 

moment then becomes 

<*GgC°rr|?mage|*Ge
COrr> = 

£(<*Gg|Mmage|*Kk>0Kk;Ge + 0Vog<*Kk|Pmage |*Ge>) ^ 7 ) 

As has been shown by Stephens, when appropriate expansions are 
made around the ground-state equilibrium geometry, R = R0, and 
only the leading terms are retained, eq 7 becomes 

<*, Gg 
>rrlu 

XGgI E 2(£Ge - £Gg. 
K^G.X.a 

(K\nm^\ia°)(Rxa- J O l X G e ) / ( ^ G 0 - ^K 0 ) 2 (8) 

where superscript or subscript O indicates evaluation at R0; a = 
x, y, or z; X refers to the Xth nucleus; WK is the energy of electronic 
state K and Wc is the energy of the ground electronic state; ^ 0 8 

and EQ1. are the (Born-Oppenheimer) energies of the ground and 
excited vibrational states. 

This expression involves a sum over all excited states and thus, 
as is well-known, is of little practical value as it stands since such 
sums cannot be evaluated accurately. However, a form of eq 8 
suitable for calculation has been obtained by Stephens.15 

If we jtake as a set of basis functions the electronic functions 
at R = R0, then perturbation theory gives for \pG as a function 
ofR 

Rx0
0) + 

where 

/ # G ( R ) \ 
*G(R) = ^0

0 + E - ^ (RXa -

V d*\* /o K^G WG°-WK° 

(9) 

(10) 

and 

^ G ( R O ) = ^ G 0 

All perturbed components of jthe wave function are taken to be 
orthogonal to i/'o0, so that ^0(R) is normalized only through first 
order. 

We_then consider the wave function for the ground-state G at 
R = R0 in the presence of the perturbation 

^ ' - -(Mmage)fl-tf(3 (H) 

which is the first-order component of the interaction Hamiltonian 
for a molecule in a static uniform magnetic field, H$. Perturbation 
theory gives for <AG(Ro) as a function of field 

^ G ( R o , ^ ) = ^G0 + ( #<j(fto,#(,) \ 
+... (12) 

where 

= _ £ ^ o LJ? ( 1 3 ) 

o WG° -WK° 

and \(/Q(R0,H^) also is normalized only through first order. 
The scalar product of ^ G ( R ) and 1/-0(R0,//^ is then given by 

W O ( R W G ( R O W = 1 + 

E ( ( ^ ) J ( ^ ) } — 
(14) 

and as we discuss later, the terms on the right in {RXa - Rx^)Hp 
and also second-order terms in (RXa - J?xa°)(^xv ~ #xv°)> an<i 
HQ- can be evaluated by using finite perturbation theory. 

Equation 8 can then be written as 

(^GgHtAWW^Ge00") = ( XGg 
• ( 

E - 2(£Ge - £Gg) X 

«#G(R) \ | / ^G(RQ,^) \ \ / n D Qx \ 

In the harmonic approximation, for the O -
/th normal mode, this becomes 

(0|(Mmage)^|l>( 

(15) 

transition of the 

/ ftV \ '/2 / / ^0(R) \ l / #G(Ro,//g) \ \ 

v 2 ; t\\ «** AlV *»> Jf 
/ f t y Y / 2 / / # G ( R ) \ | /^o(Ro,gg)\ \ 

" V 2 / \V 9Q1 ) } \ BH9 JJ 
(16) 

where the SXai relate displacement coordinates, RXa, to normal 
coordinates Q1: 

R\a ~ R\a ~ £-S\ajQi (17) 

The nuclear contribution to the magnetic dipole transition 
moment for the O —• 1 transition of the /th normal mode is given 
by 

/ft3«,Y/J ( Zxe\ 
<0|0W%|1>, = I — I £ W^H ^ - JS^ (18) 

where the harmonic approximation has been used and where tagy 

is the antisymmetric third-rank tensor. 
The electric dipole transition moment is treated in the standard 

way,25 giving within the harmonic approximation for the O —» 1 
transition of the /th mode 

(25) Wilson, E. B.; Decius, J. C; Cross, P. C. "Molecular Vibrations"; 
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Computational Procedures 
Calculation of the vibrational rotational strength with eq 16-19 

requires knowledge of the molecular wave function at the equi­
librium geometry, at various displaced geometries, and with 
magnetic fields present. It also requires knowledge of the normal 
modes of vibration. 

The molecular wave functions needed have been obtained at 
the SCF level with the GAUSSIAN SO program of Pople and co­
workers,26 modified to allow the calculation of ^0(R0) as a function 
of applied field, H$. All calculations were done with the 4-3IG 
split-valence basis. 

Equilibrium Geometry. When determining the wave functions 
and the normal modes of vibration, the equilibrium geometry must 
be specified, but the appropriate choice is not clear. One possibility 
is the experimental geometry. Another reasonable possibility is 
the theoretical equilibrium geometry corresponding to the energy 
minimum of the SCF calculation. Experience with calculations 
of other molecular properties provides little guidance. Force fields 
and normal modes are presently determined either empirically 
or from ab initio calculations. When determined empirically, the 
best experimental geometry is usually chosen for the molecule. 
For ab initio determinations, different choices have been suggested 
by different workers.27"30 One choice is the theoretical energy 
minimum. Another choice, advocated by Pulay and others for 
calculations using the 4-3IG basis, is a corrected theoretical 
minimum designed to give the best approximation to the actual 
molecular geometry (equivalent to an accurate experimental 
geometry). For calculations of molecular force fields using the 
4-3IG basis, the corrected theoretical geometry appears to give 
better results than the theoretical one. 

Ab initio calculations of the electric dipole transition moments 
of a number of molecules have been done, as well, based on the 
various geometry choices that can be made for the force field and 
associated transition dipoles,19~21 but there does not appear to be 
a clearcut difference in the results obtained in the two cases for 
the 4-3IG basis. Thus we are left with both possibilities for the 
magnetic dipole calculations. 

Calculation of Electric and Magnetic Transition Dipoles. In 
calculating the electric and dipole transition moments, there are 
several possible choices of displacement coordinate to be used in 
determining the wave function \pa(R) of eq 9. Displacements may 
be taken directly along normal coordinates, or they may be taken 
along either internal coordinates or Cartesian coordinates, and 
the results transformed to the normal coordinate representation. 
In general, displacement along normal coordinates is not the 
method of choice, since the entire calculation must be redone if 
changes are made in the force field. Internal coordinates have 
the disadvantage that uncertainties may result when redundant 
coordinates are present, unless the redundancies are separable by 
symmetry. Cartesian displacements, then, seem to be the best 
choice in general. 

The calculation of I^G(R) is straightforward. The electronic 
Schrodinger equation is solved for geometries that have been 
displaced from the equilibrium geometry. If the components of 
the dipole moment for each of the displaced geometries are 
calculated, the same SCF calculations that give the wave function 

(26) Binkley, J. S.; Whiteside, R. A.; Krishnan, R.; Seeger, R.; Defrees, 
D. J.; Schlegel, J. B.; Topiol, S.; Kahn, L. R.; Pople, J. A. GAUSSIAN-SO, 
Quantum Chemistry Program Exchange, Indiana University, Bloomington, 
IN. 
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(28) Pulay, P.; Fogarasi, G.; Pang, F.; Boggs, J. E. J. Am. Chem. Soc. 

1979, 101, 2550. 
(29) Komornicki, A.; Pauzat, F.; EUinger, Y. J. Phys. Chem. 1983, 87, 

3847. 
(30) Schwendeman, R. H. J. Chem. Phys. 1966, 44, 2115. 

as a function of displacement will also give the electric dipole 
derivatives of eq 19. 

For sufficiently small displacements, the wave function for the 
displaced configuration will be given by eq 9. The displacements 
must be sufficiently large that rounding errors are not a problem 
in determining the electric and magnetic dipole transition moments 
and yet small enough that only the terms through first order are 
important. 

The calculation of ^ ( R n , / ^ ) is done by using the finite per­
turbation theory formulated by Pople and co-workers.31 The 
Hartree-Fock problem for a molecule in the presence of a mag­
netic field is solved by adding to the Fock operator the perturbation 
given in eq 11. For sufficiently small fields, the wave function 
will be given by eq 12. However, like the nuclear displacements, 
the fields must be large enough for numerical accuracy. 

Once the wave functions ^ Q ( R ) and \pa(R0,Hp) are known, the 
scalar products of eq 14 can be calculated. Two points about the 
calculation should be noted. First, since the molecular orbitals 
are expressed as combinations of atomic basis functions located 
on each nucleus, the atomic overlap matrix must take into account 
the displacement of one basis set relative to the other. 

Secondly, care must be taken with the phases of the wave 
functions. Because of the imaginary nature of the perturbation, 
the wave function for a molecule in the presence of a magnetic 
field will be complex. (This is handled by complex expansion 
coefficients in linear combinations of the same real atomic orbitals 
used for the molecule with no field present.) For a given field, 
the solution of the Hartree-Fock equations introduces arbitrary 
phase factors relative to the unperturbed functions for each mo­
lecular orbital. Thus, there is an overall phase change for the 
molecular wave function, 

^ G ' (Ro.^) = ^ G ( R O ^ ) (20) 

where ^Q(RQ,//JJ) is the normalized function that reduces to IAG(RO) 
when Hp goes to zero. 

In order to calculate the scalar product given in eq 14, which 
is itself complex, we must be able to determine this phase change. 
We can do so in the following way. 

We first rewrite eq 12 as 

M^fff) = +c0+ E ^KVG + .» (21) 
K*G 

where 

< * K ° I 0 W W G ° > 

The bKG are thus imaginary. 
Normalizing ^o(R0,//^) through second order in the field, we 

have 

f G ( R 0 , ^ ) = Cn
HWG

0 + L *K°bK0 + ...) (23) 
K^G 

where 

Cn" = 1 / ( 1 + E |*KGI2) , / 2 (24) 

and is thus real. 
We then have 

( ^ ' ( R O V W G W ) = C nV* (25) 

Thus the arbitrary phase factor introduced by the calculation can 
be determined by taking the projection of the calculated perturbed 
molecular function on the unperturbed one. We are then free to 
multiply ^'(R^yHg) by e"'*, choosing to adhere to a phase factor 
convention of unity. 

Equation 9 also can be written as 

^0(R) = Cn
R(^G° + E ^ K % G + ...) (26) 

K^G 

(31) Pople, J. A.; Mclver, J. W.; Ostlund, N. S. J. Chem. Phys. 1968, 49, 
2960. 
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where 

and 

^KG = T. 

c n
R = i / ( i + E |<W)'/J 

HS)M 

(27) 

Ka WQ° - WK° 
(*Xa - Rxa°) (28) 

so that the dKG are real. 
For our calculated functions, the real part of the scalar product 

of eq 14 is then given through second order in the field and 
displacements by 

Re[$0(ft)|fc,(fto,ff,)>] = C*C» = 
^\a,\'a'(R\a ~ R\a H-^AV ~ R\'a' ) + ^gHg ( 2 9 ) 1+ E 

\,a,\'a' 

where Cn
 R and Cn

H have been expanded, giving 

Ax 

and 

/ / ^ 0 ( R ) \ ( ^ c ( R ) \ \ 

B0 = -1A (31) 

We also have, given our choice of phase 

Im[<J0(R)|fc,(ftoW] = E C^(RXa - RxJ)H0 (32) 

where « #o(R) \ l/ #G(RQ.^) \ \ 
8RXa ) i \ BH, ) ] (33) 

Thus, if terms of order higher than second are negligible, the 
imaginary part of the overlap gives the quantity appearing on the 
right in eq 15. 

The optimum displacements and fields will be those where only 
the terms given in eq 29 and 32 contribute to the overlap but where 
numerical accuracy is obtained. One source of error will be the 
differences arising from computational procedures in double 
precision Fortran for determining real and complex functions. The 
overlap of ^ 0(R) determined as a real function with ^ 0 (R) de­
termined as a complex function will in general not be one but equal 
to 

<^G
real(R)|^G

comP(R)> - ! + €, + Ze2 (34) 

We find that t, is of the order of 10"8 and e2 is of the order of 
10"7. This gives a lower limit to the numerical error and can be 
used to give a lower limit for displacements and applied fields. 
(Other sources of error are discussed below.) 

All normal coordinate calculations were carried out with the 
vibrational program of Mcintosh and Peterson.32 This program 
was modified to allow force constant matrices expressed in 
Cartesian coordinates to be used and to transform force constant 
matrices from Cartesian coordinates to internal coordinates and 
vice versa. 

Cyclopropane 
For our initial calculations using eq 16-18 we have chosen 

trans-\,2-C3H4D2 (Figure 1). This molecule is attractive as a 
test system for a number of reasons: it is small; the molecular 
wave functions are well represented at the SCF level; it is rigid; 
and a reliable empirical force field, as well as two ab initio ones, 
is available. Experimental VCD data are not yet available but 

(32) Mcintosh, D. F.; Peterson, M. R. QCPE 1977, 11, 342. 

P 1 - C H 2 Rock 

T1 - C H 2 Twist 

U 1 -CH 2 Wag 

Figure 1. Internal coordinates used for trans-\ (5),2(5)-(+)-dideuterio-
cyclopropane: Ai = /H1-C1-C3 , A2 = /H4-C1-C3 , A3 = ZH1-C1-C2, 
/3,4 = ZH1-C1-C2, A/>, = V2A(A, - A2 - A3 + V»)\ AT, = V2A(Ai - Ai 
+ A3 - A4); AQ, = '/2A(A1 + A2 - A3 - ft4). 

Table I. Molecular Geometries 

R(C-Hf 
R(C-C)" 
a(H-C-H)c 

exptl" 

1.082 
1.514 

116.5 

theoretical 
4-31G 

1.072 
1.502 

113.7 

test 

1.092 
1.524 

114.5 

"Reference 31. The more recent structure of R. J. Butcher and W. 
J. Jones, [/. MoI. Spectrosc. 1973, 47, 64] has not been used, since the 
geometry given here is that for which the Duncan and Burns force field 
was optimized. 6In angstroms. c In degrees. 

our aims in this study are primarily theoretical: first, to test the 
numerical feasibility of the theory and to establish appropriate 
ranges for displacements and applied fields; and, second, to ex­
amine sensitivity to different choices for geometry and force field. 
The small size of the system makes it possible to do a variety of 
calculations for different initial geometries, displacements, and 
magnetic fields. 

Force Fields and Geometries. The most complete and well-
defined empirical force field is that of Duncan and Burns (DB).33 

In this force field, 6 of the 27 independent force constants were 
constrained to be zero and the remainder were determined by using 
data from C3H6 and C3D6. We have used the set of internal 
coordinates suggested by Levin and Pearce34 (see Figure 1) and 
the Duncan and Burns force field with the same experimental 
geometry that they used (see Table I) to calculate the normal 
coordinates for trans-\,2-C3H4D2. The Duncan and Burns force 
constants and the calculated frequencies for trans-1,2-C3H4D2 

are given in Tables II and III, respectively. 
Blom and Altona (BA)35 have carried out an ab initio SCF 

calculation of the harmonic force constants for cyclopropane using 
a 4-3IG Gaussian basis set. The ab initio force constants were 
then adjusted with scaling factors found by fitting to the observed 
frequencies for C3H6 and C3D6. These, transformed to the internal 
coordinates of Levin and Pearce, are given in Table II. Blom and 
Altona chose as their geometry an adjusted theoretical geometry 
designed to give a best estimate of the true equilibrium geometry. 
We used the Duncan and Burns geometry with the Blom and 
Altona force field to obtain a second set of normal coordinates 
for trans-\,2-C3H4D2. Since this geometry differs only slightly 
from that of Blom and Altona, the frequencies calculated for C3H6 

at the two different geometries differ by 5 cm"1 or less. The 
frequencies calculated for trans- 1,2-C3H4D2 are given in Table 
III. 

We have also used a modified version of the scaled ab initio 
force field obtained by Komornicki, Pauzat, and Ellinger (KPE)29 

from a 6-3IG** basis set calculation at the geometry corre-

(33) Duncan, J. L.; Burns, G. R. /. MoI. Spectrosc. 1969, 30, 253. 
(34) Levin, I. W.; Pearce, R. A. R. J. Chem. Phys. 1978, 69, 2196. 
(35) Blom, C. E.; Altona, C. ATo/. Phys. 1976, 31, 1377. 
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Table II. Force Fields for Cyclopropane 
Force Constant" 

C-C stretch 
C-C stretch/C-C stretch interaction 
C-H stretch 
C-H stretch/C-H stretch; geminal 

interaction 
C-H stretch/C-H stretch; syn vicinal 

interaction 
C-H stretch/C-H stretch; anti vicinal 

interaction 
CH2 scissors 
CH2 scissors/CH2 scissors interaction 
CH2 rock 
CH2 rock/CH2 rock interaction 
CH2 twist 
CH2 twist/CH2 twist interaction 
CH2 wag 
CH2 wag/CH2 wag interaction 
C-C stretch/CH stretch; bonded 

interaction 
C-C stretch/CH stretch; nonbonded 

interaction 
C-C stretch/CH2 scissors;bonded 

interaction 
C-C stretch/CH2 scissors; nonbonded 

interaction 
C-C stretch/CH2 wag; bonded 

interaction 
C-H stretch/CH2 scissors; bonded 

interaction 
C-H stretch/CH2 scissors; nonbonded 

interaction 
C-H stretch/CH2 rock; bonded 

interaction 
C-H stretch/CH2 rock; nonbonded 

interaction 
C-H stretch/CH2 twist; nonbonded 

interaction 
C-H stretch/CH2 wag; nonbonded 

interaction 
CH2 scissors/CH2 wag; nonbonded 

interaction 
CH2 rock/CH2 twist; nonbonded 

interaction 

DB" 

4.2907 
-0.1483 

5.1675 
0.0982 

0.0370 

-0.0033 

0.5786 
0.0071 
0.2972 
0.0036 
0.8694 
0.1628 
0.8537 

-0.0554 
0.0948 

0.0 

-0.1975 

0.1038 

-0.3466 

0.0555 

0.0 

0.0 

0.0 

0.0 

0.0964 

0.0 

-0.0661 

BAC 

4.3332 
-0.1566 

5.1775 
0.0295 

0.0110 

-0.0070 

0.5736 
0.0070 
0.2947 
0.0008 
0.8807 
0.1529 
0.8217 

-0.0470 
0.0535 

-0.0576 

-0.1959 

0.1043 

-0.3109 

0.0649 

0.0017 

0.0653 

-0.0091 

-0,0236 

0.0046 

0.0049 

-0.0649 

KPE'' 

4.6845 
-0.1860 

5.4851 
0.0468 

0.0125 

-0.0092 

0.6381 
0.0085 
0.3131 
0.0032 
0.9642 
0.1973 
0.9737 

-0.0618 
0.0662 

-0.0616 

-0.2126 

0.1368 

-0.3532 

0.0947 

0.0019 

0.0501 

-0.0106 

-0.0302 

0.0060 

0.0059 

-0.0871 

" Force constants in mdyn/A. All angle bends have been scaled by 
rC-H = 1082 A. 'Duncan and Burns force field; see text. 'Blom and 
Altona force field; see text. ''Modified Komomicki, Pauzat, and El-
linger force field; see text. 

Table III. Calculated Frequencies (cm"1)—trans- 1,2-C3H4D2 

symmetry 
species 

A 

B 

DB0 

3075 
3041 
2271 
1459 
1345 
1188 
1094 
1055 
907 
785 
633 

3105 
3073 
2260 
1300 
1138 
1049 
955 
862 
735 
619 

BA4 

3070 
3027 
2261 
1454 
1344 
1190 
1091 
1059 
922 
775 
639 

3113 
3073 
2251 
1295 
1143 
1041 
958 
860 
728 
625 

KPEC 

3159 
3118 
2328 
1536 
1417 
1240 
1170 
1111 
970 
823 
634 

3202 
3163 
2318 
1361 
1207 
1130 
1023 
898 
756 
621 

description 

C-H stretch 
C-H stretch 
C-D stretch 
scissors 
scissors 
ring stretch, twist 
twist, wag 
twist, scissors 
ring stretch, wag 
ring stretch, wag 
twist, rock 

C-H stretch 
C-H stretch 
C-D stretch 
scissors 
rock, twist 
wag 
wag, rock 
ring stretch 
rock 
twist, rock 

"Duncan and Burns force field; see text. *Blom and Altona force 
field; see text. ' Modified Komomicki, Pauzat, and Ellinger force field; 
see text. 

sponding to the theoretical energy minimum. They transformed 
the calculated ab initio Cartesian force constants to an internal 
symmetry coordinate basis and scaled the diagonal elements by 
a factor of 0.9. We chose to transform to the internal coordinate 
basis of Levin and Pearce before scaling the diagonal elements 
by the same factor. We also used the experimental geometry of 
Duncan and Burns with this force field, just as we did with the 
Blom and Altona force field. Here, several frequencies changed 
by 10-20 cm"1 when the geometry was changed, so we readjusted 
three of the diagonal scaled ab initio force constants by 2 to 3% 
to compensate for the geometry changes. The resulting force 
constants are given in Table II and the calculated frequencies in 
Table III. 

Dipole and Rotational Strengths. For the first test calculations 
of rotational strengths for trans-\,2-C3H4D2, the experimental 
geometry and force fields described above were used. These 
calculations were used to determine appropriate ranges of dis­
placements and magnetic fields, as well as sensitivity to changes 
in force field. Subsequently, calculations at different geometries 
were carried out to explore the sensitivity to choice of geometry. 

For the first test calculations, we determined the transition 
dipoles using displacements both along the Duncan and Burns 
normal coordinates and along Cartesian coordinates. This was 
done to verify that our numerical accuracy is high enough that 
the different methods are equivalent. 

Wave functions J G ( R ) w e r e calculated first for displacements 
of ±0.0025, ±0.005, 0.0075, and 0.01 A along the six normal 
coordinates corresponding to the C-H and C-D stretching modes. 
Applied fields of 106, 5 X 10«, 107, and 5 X 107 G were taken for 
the calculation of \pG(R0,Hp). The scalar products 
( J G ( R ) I J G ( R O ^ ( J ) ) w e r e then calculated. For displacements of 
O.005_to_0.075 A and fields of 5 X 106 to 107 G, the values of 
(JG(R)|JG(R0,//^)) do not appear to be significantly affected by 
numerical uncertainties, unless the deviation from unity is very 
small. The imaginary part of the scalar product is usually two 
or more orders of magnitude larger than e2 in eq 34 (the imaginary 
part of the overlap of JG(RO) calculated as a real function and 
as a complex function). Furthermore, for these values of dis­
placement and field, unless the difference from 1 is small, the real 
part of the overlap depends quadratically on H13 and Q1 to within 
a few percent, while the imaginary part shows linear dependence 
on these variables. Smaller displacements and fields give unreliable 
results numerically and larger ones begin to have significant 
contributions from higher order terms in Hp and Q1. 

The electric dipole derivatives were calculated for all of the 
above displacements as well. For displacements of 0.005 to 0.01 
A the (S]I01

0ZdQi)0 are constant to within a few percent, which 
is consistent with previous work.36 

On the basis of the results for the first six normal modes, J G ( R ) 
and J0(Ro,/^) were calculated for each of the remaining fifteen, 
using displacements of ±0.0025 and ±0.005 A. As before, only 
the 0.005 A displacements give reliable results and only these, 
combined with the wave functions for applied fields of 5 X 106 

and 107 G, were used in the calculation of the magnetic and electric 
dipole transition moments. The resulting rotational strengths and 
dipole strengths are given in Table IV. 

The calculation of the rotational and dipole strengths was then 
redone with use of displacements along Cartesian coordinates. The 
electric dipole derivatives and the corresponding quantities for 
the magnetic dipoles, the CXa|3, were calculated with use of dis­
placements of ±0.0025 and ±0.005 A along each of the Cartesian 
coordinates. Here displacements of 0.0025 A correspond to 
somewhat larger displacements of the atoms themselves than is 
the case with displacements along normal coordinates and they 
are at the lower limit of numerical accuracy needed. The electric 
dipole derivatives and the corresponding quantities for the magnetic 
dipoles, the Qa |3, can then be transformed to derivatives with 
respect to normal coordinates with use of the transformation 
matrix from Cartesian to normal coordinates. Transformations 
to the Duncan and Burns, to the Blom and Altona, and to the 
Komomicki, Pauzat, and Ellinger force fields were carried out 
and the results are given in Table IV and Figures 2 and 3. Table 



The Theory of Vibrational Circular Dichroism J. Am. Chem. Soc, Vol. 108, No. 2, 1986 253 

3 0 0 0 " 2300 

Frequency (cur l ) 
2200 3000 ' 2300 

Frequency (cm-1) 

1039D 

304 

10' 

104<R -10' 

-30 

-50 

-70 

4 

1038D 

Fix«) Pa-Hal Choral Modal 
-f h 

DB 

-i h 

3200 2350 

Frequency (cnr l ) 
2250 

3100 
J —< i , 

30007 ' 2300 
Frequency (cm-1) 

2200 

Figure 2. (a) Absorption and VCD spectra of »ra/tt-l(S),2(S)-(+)-C3H4D2 in the C-H and C-D stretching regions calculated with use of the Duncan 
and Burns force field. R and D values in (esu-cm)2. (b) Absorption and VCD spectra of fra/«-l(S),2(S)-(+)-C3H4D2 in the C-H and C-D stretching 
regions calculated with use of the Blom and Altona force field. R and D values in (esu-cm)2. (c) Absorption and VCD spectra of trans-\{S),2-
(S)-(+)-C3H4D2 in the C-H and C-D stretching regions calculated with use of the Komornicki, Pauzat, and Ellinger force field. R and D values in 
(esu-cm)2. (d) Absorption and VCD spectra of fra/w-l(S),2(S)-(+)-C3H4D2 in the C-H and C-D stretching regions calculated with use of the fixed 
partial charge model and the Duncan and Burns force field. R and D values in (esu-cm)2. 
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Figure 3. Absorption and VCD spectra of /ra«i-l(S),2(S)-(+)-C3H4D2 in the mid-IR region. See Figure 2 for details. 

V gives the components of the electric and magnetic dipole 
transition moments for the Duncan and Burns force field, as well 

as the contributions to the total magnetic dipole transition moment 
of the electronic and nuclear parts. 
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Table IV. Rotational and Dipole Strengths Calculated for Different Force Fields and Geometries 

symmetry species 

A 

B 

symmetry species 

A 

B 

"In cm-1. 4In 1 

] DB force field normal 
coordinate displacements 

freq" 

3075 
3041 
2271 
1459 
1345 
1188 
1094 
1055 
907 
785 
633 

3105 
3073 
2260 
1300 
1138 
1049 
955 
862 
735 
619 

freq 

3159 
3118 
2328 
1536 
1417 
1240 
1170 
1111 
970 
823 
634 

3202 
3163 
2318 
1361 
1207 
1130 
1023 
898 
756 
621 

R" 

21.2 
21.3 

-25.3 
2.8 

-20.2 
3.5 

-6.3 
33.4 
0.8 
8.6 

-2.3 

18.3 
-63.5 

24.2 
23.6 

-37.8 
-8.8 

2.8 
8.3 

-6.7 
-1.4 

KPE force field 

R 

34.4 
9.0 

-25.8 
3.3 

-18.4 
6.8 
0.0 

21.5 
2.0 
8.5 

-1.9 

15.9 
-58.8 

24.5 
21.4 

-37.2 
-6.7 

2.0 
7.5 

-6.4 
-1.6 

0-44 (esu-cm)2. Tn IQ-35 (esu-cm 

tf 

0.2 
3.0 
0.5 
0.3 
0.3 
0.0 
1 2 
1.6 
2.6 
9.8 
0.7 

3.3 
2.7 
2.6 
0.8 
0.6 
2.6 
0.2 

11.9 
1.1 
0.2 

D 

0.4 
2.7 
0.4 
0.2 
0.3 
0.0 
1.5 
1.0 
1.8 

10.9 
0.4 

2.9 
2.8 
2.4 
0.6 
0.6 
2.6 
0.1 

12.3 
0.8 
0.1 

)2. 

DB force field 
Cartesian displacements 

freq 

3075 
3041 
2271 
1459 
1345 
1188 
1094 
1055 
907 
785 
633 

3105 
3073 
2260 
1300 
1138 
1049 
955 
862 
735 
619 

R 

21.5 
22.4 

-24.9 
2.9 

-19.8 
3.7 

-5.7 
33.0 
0.5 
8.1 

-2.2 

19.6 
-63.3 

24.0 
23.9 

-37.2 
-9.2 

3.1 
7.8 

-6.6 
-1.6 

D 

0.2 
3.1 
0.4 
0.3 
0.3 
0.0 
1.2 
1.5 
2.5 
9.9 
0.6 

3.3 
2.7 
2.5 
0.8 
0.6 
2.6 
0.3 

11.8 
1.1 
0.2 

DB force field theoretical 

freq 

3075 
3047 
2273 
1469 
1352 
1194 
1116 
1069 
913 
794 
642 

3100 
3073 
2261 
1309 
1153 
1073 
973 
862 
740 
628 

geometry (4-31G) 

R 

16.5 
25.9 

-23.7 
3.0 

-21.2 
4.5 

-2.9 
27.6 

1.2 
6.1 

-0.9 

20.8 
-63.6 

23.1 
25.7 

-36.2 
-11.1 

5.2 
9.4 

-6.5 
-3.1 

D 

0.1 
3.1 
0.4 
0.3 
0.3 
0.0 
1.2 
1.3 
2.1 

10.2 
0.6 

3.7 
2.5 
2.5 
0.9 
0.6 
2.4 
0.3 

11.8 
1.2 
0.2 

freq 

3070 
3027 
2261 
1454 
1344 
1190 
1091 
1059 
922 
775 
639 

3113 
3073 
2251 
1295 
1143 
1041 
958 
860 
727 
625 

freq 

3075 
3046 
2272 
1444 
1332 
1186 
1094 
1052 
907 
783 
630 

3101 
3073 
2261 
1286 
1133 
1052 
956 
860 
728 
616 

BA force field 

R 

34.3 
9.6 

-25.8 
3.0 

-18.7 
5.2 

-7.0 
29.6 

1.1 
10.8 
-2.7 

15.4 
-58.8 

24.3 
22.5 

-36.2 
-5.9 

0.3 
8.0 

-7.9 
-1.5 

DB force field 
test geometry 

R 

18.4 
27.4 

-26.1 
2.6 

-17.8 
3.2 

-4.1 
28.3 

1.3 
5.8 

-0.7 

22.6 
-68.1 

25.1 
22.2 

-34.1 
-10.1 

3.1 
10.7 
-6.8 
-2.9 

Lowe et al. 

D 

0.4 
2.8 
0.4 
0.2 
0.3 
0.0 
0.9 
1.7 
2.6 

10.4 
1.0 

2.9 
2.9 
2.4 
0.7 
0.6 
2.3 
0.0 

13.1 
1.2 
0.2 

D 

0.1 
3.4 
0.5 
0.2 
0.3 
0.0 
1.0 
1.3 
2.9 
9.2 
0.5 

4.0 
2.7 
2.8 
0.6 
0.5 
2.1 
0.1 

11.8 
1.0 
0.1 

Finally, we repeated the Cartesian displacement calculations 
for two different geometries, which are given in Table I. One of 
these is the theoretical geometry calculated with the 4-3IG basis 
and the other is a test geometry obtained by adding 0.01 A to each 
bond length and subtracting 2° from each H-C-H bond angle. 
We also recalculated the normal modes at each geometry using 
the force constants of Duncan and Burns (the calculated fre­
quencies changed by 15 cm'1 or less from those found at the 
experimental geometry). The Cartesian electric dipole derivatives 
and the Qa/3 were transformed to derivatives with respect to these 
modified normal modes and the dipole and rotational strengths 
obtained. Results are given in Table IV. 

Discussion 
Calculation of the rotational strengths of vibrational transitions 

will be in error if either the electric or magnetic dipole transition 
moments are calculated incorrectly, if the molecular force field 
is incorrect, or if the geometry is incorrect. Using the current 
theory we have begun to examine these effects separately. 

Calculations of magnetic dipole transition moments using the 
ab initio wave functions employed here will have sources of error 
that are similar to those arising in ab initio calculations of electric 
dipole transition moments and of molecular force fields, since all 

of these calculations involve determining molecular wave functions 
at the equilibrium position and at displaced geometries. The 
sources of error in ab initio calculations of electric dipole moment 
derivatives and of force constants have been discussed by a number 
of authors16"20,30,36,37 and include numerical precision difficulties, 
basis function effects, limitations due to the use of SCF wave 
functions with their neglect of correlation, and ambiguities in 
choice of equilibrium geometry. Numerical precision problems 
and sensitivity to choice of geometry have been examined in the 
work reported here. 

Our results indicate that numerical precision is not a major 
difficulty except for small values of the transition moments. Values 
of the rotational strength below 10"44 (esu-cm)2 and of the dipole 
strength below 10~41 (esu-cm)2 begin to show significant errors. 
That numerical accuracy is not a problem is also shown by the 
general agreement between the calculations done with use of both 
normal mode and Cartesian displacements. Very different per­
turbed geometries are used in these two calculations. Several 
atoms are displaced in the normal coordinate case whereas only 

(36) Werner, H.; Meyer, W. MoI. Phys. 1976, 31, 855. 
(37) Pulay, P.; Lee, J.; Boggs, J. E. J. Chem. Phys. 1983, 79, 3382. 
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Table V. Components of the Magnetic and Electric Dipole Transition Moments 

sym spei 

A 

B 

A 

B 

cies 

3075 
3041 
2271 
1459 
1345 
1188 
1094 
1055 
907 
785 
633 

3105 
3073 
2260 
1300 
1138 
1049 
955 
862 
735 
619 

freq" 

3075 
3041 
2271 
1459 
1345 
1188 
1094 
1055 
907 
785 
633 

3105 
3073 
2260 
1300 
1138 
1049 
955 
862 
735 
619 

DB force field Cartesian Displacements 

total magnetic dipole transition moment4 

X 

0.69 X 10"' 
0.31 X 10"8 

-0.41 X 10-'° 
0.32 X 10"8 

-0.10 X 10'8 

0.98 X 10"' 
0.13 X 10"' 
0.51 X 10-9 

-0.49 X 10-' 
-0.36 X 10-' 

0.14 X 10-' 

-0.15 X 10"" 
-0.15 X IO"4 

-0.66 X IO"5 

0.83 X 10"5 

0.15 X 10"4 

-0.17 X 10~5 

0.18 X 10~5 

0.72 X IO"6 

0.21 X IO"5 

-0.10 X IO"5 

y 
-0.17 x IO"4 

0.40 X 10-5 

0.12 X IO"4 

-0.18 X IO"5 

-0.11 X IO"4 

-0.11 X 10-" 
0.17 x 10"5 

0.84 X IO"5 

-0.94 X IO"7 

-0.81 X 10-* 
-0.86 X 10"* 

0.41 X 10-" 
0.10 X 10"' 
0.67 X 10"' 
0.50 X 10"' 
0.15 X 10-' 

-0.30 X 10"' 
0.13 X 10"8 

0.38 X 10-9 

-0.45 X 10"' 
0.21 X 10-' 

Z 

0.26 X 10-8 

-0.67 X 10"' 
0.19 X 10-8 

0.38 X 10"' 
0.25 X 10"' 
0.19 X 10-8 

0.18 x 10"8 

0.57 X 10-' 
-0.94 X IO"10 

0.19 X IO'8 

-0.18 X 10"' 

-0.13 X 10"6 

-0.45 X IO"6 

0.19 X IO"7 

-0.19 x IO"5 

-0.90 X IO"5 

-0.14 X IO"4 

0.59 X IO"5 

0.15 X IO"6 

0.16 X IO"5 

-0.44 x IO"5 

electronic contribution magnetic 
dipole transition moment 

X 

0.69 X IO"9 

0.31 x 10-8 

-0.41 X IO"10 

0.32 X IO"8 

-0.10 X IO"8 

0.98 X 10-' 
0.13 X 10"' 
0.51 X 10-' 

-0.49 X 10"' 
-0.36 X 10-' 
0.14 X 10"9 

-0.30 x 10"4 

-0.29 X 10-" 
-0.72 X 10"5 

-0.36 X 10-5 

0.47 X 10~7 

-0.12 X 10"« 
0.15 X 10"5 

-0.46 X 10~7 

-0.50 X IO"5 

0.26 X IO"5 

y 
-0.32 X 10-" 

0.72 X 10-5 

0.12 X 10-4 

0.10 X 10"5 

0.55 X 10-5 

0.15 X IO'5 

0.87 X 10"6 

0.37 X 10"5 

-0.14 X IO"5 

0.39 X IO"5 

0.67 X 10-* 

0.41 X 10-" 
0.10 X 10"9 

0.67 X 10"' 
0.50 X 10"' 
0.15 X 10"' 

-0.30 X 10"' 
0.13 X 10"8 

0.38 X 10"' 
-0.45 X 10"' 

0.21 X IO"8 

i 

0.26 X IO"8 

-0.67 X 10"' 
0.19 X IO"8 

0.38 X 10"' 
0.25 X IO"8 

0.19 X IO"8 

0.18 X IO"8 

0.57 X 10"' 
-0.94 X IO"10 

0.19 X IO"8 

-0.18 X IO"' 

0.68 X IO"7 

0.17 X 10"* 
0.18 X IO"7 

0.80 X 10"* 
0.32 X IO-5 

0.43 X IO"5 

-0.98 X IO"* 
0.28 X IO"* 

-0.12 X IO"5 

0.27 X IO"5 

total electric dipole transition moment4 

X 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

-0.12 X 10"' 
0.41 X 10-' 

-0.36 X IO'' 
0.28 X IO"1 

-0.25 x 10"' 
0.51 X 10"' 
0.15 X 10-' 
0.11 

-0.33 X 10"' 
0.13 X 10"' 

y 
-0.13 X 10"' 

0.56 X 10"' 
-0.21 X 10"' 
-0.17 x 10"' 

0.18 X 10"' 
-0.32 X IO"2 

-0.34 X 10"' 
0.39 X IO"' 

-0.50 X 10-' 
-0.99 X 10-' 

0.25 x 10"' 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

Z 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

-0.56 X 10-' 
0.32 x 10"' 
0.35 X 10"' 

-0.18 X IO'2 

0.65 X IO"4 

0.27 x IO-3 

0.70 X IO"3 

0.52 X IO'3 

0.32 X IO"2 

0.80 X IO"3 

nuclear contribution magnetic 
dipole 

X 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

0.14 X IO"4 

0.14 X IO"4 

0.52 X 10"* 
0.12 X IO"4 

0.15 X IO"4 

-0.16 X IO"5 

0.24 X IO"6 

0.77 X 10"* 
0.72 X IO"5 

-0.36 X IO"5 

transition moment 

y 
0.15 X IO"4 

-0.31 X IO"5 

-0.60 X IO"6 

-0.28 X IO"5 

-0.16 X IO"4 

-0.13 X IO"4 

0.80 x IO"6 

0.47 X IO'5 

0.13 X IO"5 

-0.47 X IO'5 

-0.15 X IO"5 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

Z 

0.0 
-0.0 

0.0 
0.0 

-0.0 
0.0 

-0.0 
0.0 
0.0 

-0.0 
-0.0 

-0.20 x IO"6 

-0.63 x IO"6 

0.52 X IO"' 
-0.27 x IO"5 

-0.12 X IO"4 

-0.18 X IO"4 

0.69 X IO"5 

-0.14 X IO"6 

0.27 X IO"5 

-0.70 x IO"5 

'In cm"'. 4In IO"18 (esu-cm)2. cValues given as 0.0 are IQ-'3 or less. 

one atom at a time is displaced when Cartesian coordinates are 
used. Different errors should arise from the SCF calculations in 
the two cases and appear when the rotational and dipole strengths 
are calculated. Such differences are clearly small. 

Another indication of the numerical accuracy is the extent to 
which the calculated values reflect the symmetry of the system. 
In Table V, the components of the electric and magnetic transition 
dipoles are given for the calculation using Cartesian displacements 
transformed to the Duncan and Burns normal modes. The 
molecule has C2 symmetry. The molecular Cartesian axes are 
taken along the symmetry axes as shown in Figure 1. For the 
A modes, only the y components should be nonzero and for the 
B modes the x and z components. The selection rules are obeyed 
very well for the electric dipole transition moments and reasonably 
well reproduced by the magnetic dipole transition moments. 

We also determined that the calculation shows the symmetry 
of the system by calculating rotational strengths for trans-\-
CR),2(i?)-C3H4D2 and for C3H6. We calculated the rotational 
strength directly for the highest frequency normal mode of the 
Duncan and Burns force field and also used the calculations with 
respect to Cartesian coordinates to obtain the complete set of 
rotational strengths for each molecule. In the case of the two 

enantiomers, the rotational strengths obtained were equal in 
magnitude to within a few percent and opposite in sign. For achiral 
C3H6 the calculated rotational strengths were all less than IO-44, 
which is the numerical limit indicated above. 

Although numerical accuracy is not a problem, there are likely 
to be basis function effects that limit the accuracy of our calculated 
values. Experience with ab initio calculation of other properties, 
particularly intensities of vibrational transitions, indicates that 
changes with basis function can be important. Accurate calcu­
lation of the electric dipole transition moment often requires 
polarization functions.'6,17 Table VI compares our theoretical 
intensities for C3H6 and C3D6, calculated with the Duncan and 
Burns force field, with the experimental intensities of Levin and 
Pearce.34 The qualitative agreement is good, but the values are 
high by 50 to 100%. The inclusion of polarization functions in 
the basis would likely improve the quantitative agreement. 
Whether or not this is indeed so and whether the same is true for 
the magnetic dipole transition moments remains to be determined, 
both by calculations using larger basis sets and by comparison 
of calculated rotational strengths with experimental data. 

The results for different force fields indicate that the calculated 
VCD spectrum depends, as expected, on the relative frequencies 
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Table VI. Calculated and Experimental Intensities of C3H6 and 
C3D6 

C3H6 

C3D6 

"6 

"7 

" 8 

C9 

"10 

"11 

"6 

"7 

"8 

C , 

"10 

"11 

DB force field" 

experimental4 

intensity 
freqc 

3102 
854 

3024 
1438 
1028 
869 

2337 
614 

2209 
1071 
886 
717 

V 
0.97 
0.06 
1.27 
0.13 
1.98 
3.58 

0.68 
0.06 
0.68 
0.49 
0.31 
3.75 

theoretical 

freq 

3119 
855 

3036 
1442 
1032 
873 

2324 
614 

2199 
1069 
886 
717 

intensity 

r 
1.41 
0.00 
2.02 
0.32 
2.27 
6.25 

1.10 
0.00 
1.01 
1.06 
0.78 
5.72 

"See text. 'Reference 32. ' In cm"1. d\n cm2/mM 

of the absorption bands but that, for a given normal mode, the 
rotational and dipole strengths are only moderately dependent on 
details of the force field. The three force fields used are all of 
good quality and do not differ drastically in their normal modes, 
although the relative positions of several bands change. The 
calculated rotational strengths are qualitatively the same for a 
given mode, that is they have the same signs for all three cases 
but the magnitudes change somewhat, particularly for the smaller 
values. In most cases these changes are less than 50%. The 
changes are least for the C-H and C-D stretches and are largest 
for the more strongly mixed modes involving twists and wags. The 
different sign patterns of the VCD spectra for the three cases, 
seen in Figures 2 and 3, occur only because of switches in the order 
of the modes. The results given here indicate, then, that in addition 
to the dependence of the predicted VCD spectrum on the fre­
quencies of the normal modes to a lesser extent it depends on the 
details of the motion. Thus, the exact force field may not be 
needed in order to make a qualitatively correct prediction of the 
VCD spectrum, but quantitative differences in rotational strength 
calculations may help to decide among different force fields that 
reproduce the observed vibrational frequencies equally well. 

In addition to the three force fields discussed above, we have 
examined cruder force fields, in which many small interaction 
constants have been taken to be zero. These force fields are closer 
to the level of those that have been used in most previous VCD 
calculations.1 We find that the rotational strengths calculated 
with such force fields can differ greatly both in magnitude and 
sign from the values obtained with the previous three. We plan 
further explorations of the effects of drastic changes in force field 
on rotational strength. 

Changes in geometry appear to have little effect on the cal­
culated rotational and dipole strengths. As seen in Table IV, the 
qualitative features stay the same and even quantitatively there 
is little change for the three different geometries that were used. 
Except for a few of the smaller values, the changes are less than 
20%. (The changes that do occur may be due in part to the fact 
that the force field was not reoptimized for the new geometry.) 
The lack of sensitivity to geometry may come from the fact that 

the symmetry for trans-l,2-C3H4D2 is not changed with changes 
in geometry. Uncertainties in geometry may be more important 
in less symmetric cases where the chirality of the system is directly 
affected. 

Although experimental VCD data on frans-l,2-C3H4D2 are 
lacking, the predicted R and D values are of the order of magnitude 
found in other, analogous, molecules for which VCD data do exist.1 

//•atts-l.l-Dideuteriocyclobutane38'39 is an especially relevant model 
in making such a comparison. The results of our calculations are 
thus clearly physically reasonable. 

Comparison with the Fixed Partial Charge Model. The fixed 
partial charge (FPC) model3 has been widely used to calculate 
vibrational circular dichroism spectra.1 Therefore, for purposes 
of comparison, we have carried out a FPC calculation for 
7/wu-l,2-C3H4D2, using the Duncan and Burns force field. The 
results are compared with our ab initio calculations in Figures 
2 and 3 (we have chosen qH so as to give approximately equal 
dipole strengths for the C-H stretching vibrations for the two 
calculations). It is not surprising that the two calculations differ 
substantially, both qualitatively and quantitatively. However, it 
is interesting that, despite the deficiencies of the FPC model, for 
modes above 1000 cm"1 the rotational strengths (but not the dipole 
strengths) are qualitatively similar. This similarity may be in­
dicative of some underlying physical mechanism. 

Conclusion 
The interpretation of VCD spectra has been bedeviled by the 

absence of a reliable theory.1 Models and formalisms have 
flourished, but none has been simultaneously rigorous and capable 
of implementation. The theory recently developed provides a 
rigorous formalism. We have shown in this paper that its im­
plementation is practicable using ab initio SCF wave functions. 
The way is thereby opened to meaningful comparisons of theory 
and experiment. 

The molecule studied here, trans- 1,2-C3H4D2, was chosen 
because its size makes many different calculations possible. We 
have demonstrated that the calculation is numerically feasible. 
Since, however, VCD data do not yet exist for this molecule, we 
cannot tell from these calculations whether the theory is capable 
of accurate prediction at the 4-31G level. Further work is ongoing, 
to secure experimental data, to examine the effects of changing 
basis functions, and to explore further the sensitivity of the the­
oretical results to changes in force field. 

At the same time, we are applying the theory to several mol­
ecules for which VCD data exist, including trans-l,2-di-
deuteriocyclobutane and propylene oxide. Preliminary results are 
extremely encouraging.1'40 
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